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Abstract: Catalytic nitrobenzene reduction is crucial for the synthesis of 4,4-methylene diphenyl
diisocyanate, which is used to produce polyurethane foams, thermoplastic elastomers, and adhesives.
The stability and activity of nanoparticle catalysts are affected by surface ligands and stabilizers.
We established the complete composition of 7.0 ± 1.1 nm iridium oxide nanoparticles that were
stabilized by polyvinylpyrrolidone (PVP[Ir]). PVP[Ir] and its surface stabilizers were characterized
using elemental analysis (EA), high-resolution X-ray photoelectron spectroscopy (XPS), powder X-ray
diffraction (PXRD), FT-IR, and UV-vis spectroscopy. Notably, PVP[Ir] contained 33.8 ± 0.4% Ir. XPS
binding energy analyses suggest that 7% of the Ir is Ir(0) and 93% is IrO2. Using formic acid as the
source of hydrogen, PVP[Ir] catalyzed the selective hydrogenation of nitrobenzene to give aniline
as the only product in 66% yield in 1 h at 160 ◦C in a high-pressure metal reactor. Less than 1% of
the side products (azobenzene and azoxybenzene) were detected. In contrast, using alcohol as the
hydrogen source led to a low yield and a poor selectivity for aniline.

Keywords: iridium oxide nanoparticles; transfer hydrogenation; nitrobenzene reduction; catalysis;
formic acid; alcohol; characterizations of nanoparticles

1. Introduction

Aniline is made in the industry primarily by the catalytic hydrogenation of nitrobenzene [1].
The vast majority of aniline is used as the precursor to 4,4-methylene diphenyl diisocyanate (MDI) [1].
In 2008, the demand for pure and polymeric MDI in the United States was 1.61 million metric tons [2].
MDI is used to manufacture polyurethane foams, thermoplastic elastomers, and adhesives [1,3].
Aniline is also a versatile reagent in organic synthesis via the Sandmeyer reaction [4]. Aniline and
glycerol can undergo a Skraup condensation–cyclization reaction to form quinoline with nitrobenzene
as the hydrogen acceptor [1,4].

The conventional approach to convert nitrobenzene to aniline via catalytic hydrogenation using
Pd/C and H2 is a notable safety hazard [5,6]. Pd/C is a pyrophoric material that can spontaneously
spark in air and ignite methanol or filter paper [5–7], and H2 is explosive [8,9]. In addition, the
catalyst loading of Pd/C is typically high: 5% or more in Pd [5,6]. H2 is mostly produced from the
energy-intensive catalytic steam reforming of methane at 700–850 ◦C [10]. Therefore, alternative
approaches that are safe and sustainable are preferred.

Modern synthetic methods for the catalytic hydrogenation of nitrobenzene have reduced the
risk of combustion and Pd loading. Palladium(II) acetate was used as a safe precursor to generate
Pd/C in situ [11]. Pd nanoparticles (NPs) embedded in an organically modified silica support were

Chemistry 2020, 2, 960–968; doi:10.3390/chemistry2040061 www.mdpi.com/journal/chemistry

http://www.mdpi.com/journal/chemistry
http://www.mdpi.com
https://orcid.org/0000-0003-2524-8857
http://www.mdpi.com/2624-8549/2/4/61?type=check_update&version=1
http://dx.doi.org/10.3390/chemistry2040061
http://www.mdpi.com/journal/chemistry


Chemistry 2020, 2 961

an active and safe catalyst [6]. Meanwhile, transfer hydrogenation [12–17] has been developed to
replace H2 with organic compounds that can be derived from various resources such as biomass,
CO2, and fossil fuels. Recently, the transfer hydrogenation of nitrobenzene has been realized using
Pd [18–21] or Co [22–25] NPs as the catalyst and formic acid or ammonium formate as the source of
hydrogen. Similar reactions can also be achieved using various metal complexes as the catalyst [26,27].
Nevertheless, the transfer hydrogenation of nitrobenzene can be performed without a transition metal
catalyst and with NaOH, albeit with a low selectivity for aniline [16,28].

The stability and activity of nanoparticle (NP) catalysts are affected by surface ligands and
stabilizers [29–31]. Reactive intermediates can coordinate with the NP surface atoms. Therefore,
the surface chemistry of ligand and stabilizers is crucial for the rational design of NP catalysts and
elucidating the mechanisms. The characterization of these ligands and stabilizers remains a great
challenge [29–31].

In this work, we characterized the surface ligands and stabilizers on Ir NPs stabilized by
polyvinylpyrrolidone (PVP). The NP stability, reactivity, and catalysis were investigated for the
transfer hydrogenation of acetophenone and nitrobenzene. Although Ir NPs are active for catalytic
hydrogenation using H2 [32–38], the transfer hydrogenation of nitrobenzene was rarely studied [13].

2. Results and Discussion

We reproduced the literature synthesis of PVP-stabilized metallic Ir NPs (PVP[Ir]) using IrCl3·3H2O
in the presence of PVP in an aqueous alcohol solvent under N2 at 110 ◦C [39,40]. The alcohol is the
reducing agent that converts Ir(III) to Ir(0). The synthesis in methanol [39] was used for the 7 ± 1.1 nm
NPs with a high surface area and a narrow size distribution. The powder X-ray diffraction (PXRD),
UV-vis, and FT-IR spectra of PVP[Ir] corroborated the original report [39]. A broad, amorphous
reflection was observed in the PXRD analysis. No crystalline Ir reflections were detected, [41] which is
consistent with amorphous NPs. A strong UV-vis absorption near 200 nm was assigned to the n-to-π*
transition [42] of the γ-lactam moiety in PVP. The lack of an absorption at 400 nm is consistent with the
complete conversion of the starting material (IrCl3·3H2O). The strong lactam C=O stretch at 1630 cm−1

was observed in the FT-IR analysis (Figure S1 in Supplementary Materials). PVP[Ir] powder was
stable against aggregation for 3 months and can be readily redispersed in water, methanol, ethanol,
and 2-propanol. Details of the experiments are described in the Supplementary Materials.

To establish the complete composition of PVP[Ir], we performed elemental analysis (EA) and
high-resolution X-ray photoelectron spectroscopy (XPS) analysis. Ir (33.8 ± 0.4%), C (21.59 ± 1.23%),
H (3.97 ± 0.41%), and N (4.29 ± 0.26%) were detected by EA. These elements were attributed to the
NP core and PVP stabilizer, which accounted for 63.66 ± 2.32% of the total mass. The C-to-N ratio of
5.9:1.0 in PVP[Ir] matched the 6:1 ratio in PVP. The H-to-N ratio of 12.9:1.0 is 43% higher than the 9:1
ratio in PVP. The excess hydrogen could be due to water, hydroxide ions, and surface hydride [29].

The other 36.34% of the mass was attributed to Na, O, and Cl, which were detected in an XPS
survey spectrum. Sodium and chloride originated from NaOH and IrCl3·3H2O, which were used
in the synthesis of PVP[Ir]. Chloride ions likely existed as Derjaguin–Landau–Verwey–Overbeek
(DLVO) stabilizers [29,30] on the NPs with sodium as the counterions. No significant (<5%) NaCl
crystalline phase was detected in the PXRD analysis of PVP[Ir], which is consistent with the absence
of a separate crystalline NaCl phase as an impurity. However, the presence of amorphous NaCl and
NaOH impurities cannot be ruled out. Oxygen can come from PVP, water, air, or NaOH. Hydroxide
ions can act as the surface ligands on Pt NPs [29,43]. The XPS analysis was performed using gold as
the reference, which was sputtered on the sample, with an Au 4f7/2 peak [29] at 84.0 eV.

High-resolution XPS binding energy analysis was performed on the Ir 4f7/2 and 4f5/2 binding
energies of freshly made PVP[Ir] (Figure S2 in Supplementary Materials). Ir(0) in 7% and IrO2 in
93% were detected. The binding energies at 60.76 and 63.74 eV were attributed to Ir metal, where the
corresponding binding energies are 60.8 ± 0.2 and 63.8 eV [41]. The binding energies at 61.96 and
64.94 eV are consistent with IrO2 (61.9 and 64.9 eV) [41]. Ir2O3 (62.45 and 65.43 eV) [13] and IrCl3
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(62.5 and 65.5 eV) [41] were not observed. Together with the lack of the IrCl3 absorption (400 nm) in
the UV-vis analysis of PVP[Ir], the presence of IrCl3 impurity is ruled out. The XPS results suggest
that PVP[Ir] consists of partially reduced IrO2 NPs that were stabilized by PVP. The XPS spectra are
available in the Supplementary Materials.

Methanol is a sustainable source of hydrogen that can be obtained from the CO2 reduction,
biomass fermentation, and syngas (H2 and CO) [15,44]. Methanol can serve as a hydrogen donor for
the catalytic hydrogenation of aldehyde, [45] imine [15], and nitroarene [26,46] using transition-metal
complexes or Pd-Fe/Al2O3 [47]. Therefore, we studied the reactivity of PVP[Ir] toward methanol:
PVP[Ir] was heated in a solution of KOH in methanol solution at 160 ◦C for 1 h. At the end of the
reaction, a carbonyl stretch at 1875 cm−1 was detected by the FT-IR analysis (Figure S3 in Supplementary
Materials). No carbonyl stretch was observed in PVP[Ir] before the reaction with methanol (Figure S3
in Supplementary Materials), which ruled out the possibility that the metal carbonyl stretch was
due to PVP[Ir]. PVP[Ir] was synthesized in methanol at a relatively low temperature of 110 ◦C,
instead of 160 ◦C as in this reactivity study. This metal carbonyl is unlikely to originate from the
Na, O, and Cl impurities in PVP[Ir]. This stretching frequency is consistent with a metal carbonyl
(1750–2050 cm−1) [48] but inconsistent with an iridium(0) carbonyl. A terminal iridium(0) carbonyl [49]
(2025 cm−1) and an Ir4(CO)12 cluster [50] (2029 and 2069 cm−1) can be ruled out. The iridium(0)
µ2-bridging carbonyl (1750 cm−1) can also be ruled out [49]. Although stretching frequencies close to
1875 cm−1 have been reported for µ2-bridging carbonyl ligands on functionalized tetrairidium carbonyl
clusters (1800 to 1878 cm−1), [51,52] the 1875 cm−1 stretch cannot be assigned to such clusters due to
the lack of any terminal carbonyl stretch. Overall, the coordination environment of this metal carbonyl
is unclear. Surface metal carbonyl can poison a catalyst, [15,44] but it can also act as a NP stabilizer
without the poisoning effect [29].

PVP[Ir] was used as a catalyst for the base-promoted transfer hydrogenation of acetophenone,
which was a model reaction to identify an active hydrogen donor [12,16]. The nitrobenzene transfer
hydrogenation can be complicated by the formation of side products (azobenzene, azoxybenzene) and
is unsuitable for this purpose [16,47]. In an alcohol solvent with KOH, acetophenone was reduced to
1-phenylethanol at 160 ◦C in 1 h in the presence of 1% PVP[Ir] (Scheme 1 and Table S1 in Supplementary
Materials). The reaction was performed in a high-pressure metal reactor and heated in an oven. This
setup enabled the reaction to take place at a higher temperature than the normal boiling point of the
solvent, thus shortening reaction time. The 1% catalyst loading was calculated using the mole of
acetophenone and the mole of Ir, measured by EA, in 7.7 mg of PVP[Ir].
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Scheme 1. The transfer hydrogenation of acetophenone catalyzed by PVP[Ir] using alcohol as the source
of hydrogen. The results and reaction conditions are described in Table S1 of Supplementary Materials.

With methanol as the source of hydrogen, no product formed, and unreacted acetophenone was
recovered (entry 1 in Table S1). Using ethanol as the source of hydrogen but under otherwise identical
conditions, 1-phenylethanol formed in 53% yield with PVP[Ir] and 19% yield without PVP[Ir] (entry
2). The product yield from the PVP[Ir]-catalyzed reaction is 34% higher than the one without. Using
2-propanol as the source of hydrogen, the reaction was highly efficient regardless of whether PVP[Ir]
is present. Only quantitative product formation was observed (entry 3 in Table S1). Details of the
experimental procedures are described in the Supplementary Materials. The product yields inversely
correlated with the alcohol α-C-H bond strength [53]. The most reactive alcohol was 2-propanol,
consistent with the related studies [14–16,28].
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Given the significant reactivity of alcohols as the hydrogen source in the PVP[Ir]-catalyzed transfer
hydrogenation of acetophenone, we studied the selectivity in the catalytic transfer hydrogenation
of nitrobenzene under similar reaction conditions (Table 1). Ethanol was ineffective as the source of
hydrogen for the nitrobenzene reduction (entry 1 in Table 1). Aniline was formed with only 5.3%
yield, which is calculated by dividing the mole of aniline by the mole of nitrobenzene starting material.
The partially reduced products azobenzene and azoxybenzene were formed in 1% and 7.1% yields,
respectively. The selectivity of aniline to azobenzene and azoxybenzene (the dimers) was 0.65 to 1,
favoring the dimer formation. The unreacted starting material was detected in 7% recovery yield,
which suggests that 93% of the nitrobenzene has been converted. Dark red precipitates were found
at the end of the reaction but were filtered out before the NMR analysis. The mass balance, which is
calculated by adding together the aniline yield, the unreacted starting material recovery yield, and
two times the yield of the dimers (two equivalents of nitrobenzene for one equivalent of dimer),
is only 29%. This low mass balance suggests that 71% of the nitrobenzene starting material was
converted to products that were not detectable by the 1H{13C} NMR analysis. The lost 71% of the
nitrobenzene starting material is attributed to the dark red precipitates that were filtered out before the
NMR analysis. The precipitates could contain phenazine, a product from coupling nitrobenzene and
aniline under basic conditions. [1] When 2-propanol was used as the source of hydrogen and under
otherwise identical conditions (entry 2), the aniline yield increased drastically to 31%, and a reversal
of selectivity occurred to favor aniline formation. A selectivity of 1.4:1 was observed. The unreacted
starting material was recovered in 5% yield, and the mass balance was 84%. Dark red precipitates
were again observed. In entry 3, the aniline yield decreased to 18%, and the selectivity reversed to
0.66:1 in a control experiment in the absence of PVP[Ir] but under otherwise identical conditions to
those in entry 2. The unreacted starting material was recovered in 12% yield, and the mass balance
was 84% (entry 3). PVP[Ir] was likely responsible for the higher yield and selectivity in the catalyzed
reaction (entry 2) than those from the uncatalyzed reaction (entry 3).

Table 1. PVP[Ir] in the catalytic transfer hydrogenation of nitrobenzene to aniline.

Chemistry 2020, 2, x 5 

 

In contrast, the dehydrogenation of methanol, ethanol, and 2-propanol to the corresponding 
aldehydes is endothermic [55–58]. Primary alcohols can be dehydrogenated to form aldehydes, which 
can undergo decarbonylation to form CO [59,60]. Methanol, ethanol, 1- and 2-propanol can undergo 
decarbonylation on a Pd metal surface to give CO and hydrocarbon [59]. Nevertheless, the formation 
of surface metal carbonyl does not necessarily poison a catalyst [29]. Although water can promote 
the catalytic hydrogenation of acetophenone using 2-propanol as the source of hydrogen [61,62], it is 
beyond the scope of this work to determine whether water can also promote 2-propanol for the 
catalytic nitrobenzene reduction. 

Table 1. PVP[Ir] in the catalytic transfer hydrogenation of nitrobenzene to aniline. 

Reaction conditions unless otherwise specified: Nitrobenzene in 1.2 mmol or 0.24 M, KOH in 1.43 
mmol, an alcohol solvent in 5.0 mL, 160 °C, 1 h, under N2, and with 1% catalyst loading (11 μmol), 
which is calculated by dividing the mole of Ir, obtained from elemental analysis, by the mole of 
nitrobenzene, 1.2 mmol. AZB and AZXB denote azobenzene and azoxybenzene, respectively. The 
dimer refers to azobenzene and azoxybenzene. N/A denotes not applicable. All percentages are % 
mole. a Yields are calculated based on the starting material, nitrobenzene in 1.2 mmol, using 
quantitative 1H{13C} NMR analysis with p-xylene as an internal standard; b SM denotes starting 
material (nitrobenzene); c mass balance = % yield of aniline + 2 × % yield of the dimers + % recovery 
yield of nitrobenzene starting material; d control experiments without the Ir catalyst; e the solvent is 
composed of 5 mL methanol and 88%wt aqueous formic acid in 0.43 mL (12 mmol of formic acid, 2.2 
M in the 5.43 mL combined solution); f repeated twice. 

The pressure was monitored over time for the catalytic transfer hydrogenation with formic acid 
at 160 °C (entry 4 in Table 1). The reaction was carried out in a high-pressure metal reactor equipped 
with a pressure gauge on a gage block assembly (Parr Instrument Company, Moline, IL, USA). 
Heating was carried out in a silicone oil bath that can withstand temperature up to 200 °C (Sigma-
Aldrich, St. Louis, MO, USA). The pressure gauge (Wika Instrument, Lawrenceville, GA, USA) has a 
detection limit of 2–140 kg/cm2 (1 kg/cm2 = 0.98 bar). Since the pressure gauge can be damaged at 
elevated temperature, only the reaction vessel was fully submerged in the oil bath. As described in 
entry 1 in Table 2, the temperature of the oil bath decreased from 160 to 135 °C soon after submerging 
the reactor in the oil bath, which had been pre-heated to 160 °C. The pressure of the reaction was 4 ± 
1 kg/cm2. Fifteen minutes later (entry 4 in bold), the temperature and pressure rose to 160 °C and 20 
± 1 kg/cm2. Another fifteen minutes later (entry 7 in bold), the pressure reached the maximum of 24 
± 1 kg/cm2 and remained at this value till the end of the reaction (entries 7 to 15). This pressure cannot 
be fully accounted for by the vapor pressure of methanol solvent, which is 16 bar (17 kg/cm2) at 160 
°C [63]. The additional pressure of 7 ± 1 kg/cm2 could be attributed to the gases generated from the 
decomposition of formic acid. The dehydrogenation of formic acid is exothermic and can be catalyzed 

 

Entry Solvent 
Aniline 
Yield a 

AZB 
Yield a 

AZXB 
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Aniline 
to Dimer 

Selectivity 
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SM b 

Mass 
Balance c 

1 Ethanol 5.3% 1% 7.1% 0.65:1 7% 29% 
2 2-propanol 31% 14% 10% 1.4:1 5% 84% 

3 d 2-propanol 18% 4% 23% 0.66:1 12% 84% 

4 e Methanol 
formic acid 66% <1% <1% >66:1 40% 106% 

5 d,e,f 
Methanol 

formic acid <1% <1% 1% N/A 19 ± 1% 22% 

Entry Solvent Aniline
Yield a

AZB
Yield a

AZXB
Yield a

Aniline
to Dimer

Selectivity

Recovered
SM b

Mass
Balance c

1 Ethanol 5.30% 1% 7.10% 0.65:1 7% 29%
2 2-propanol 31% 14% 10% 1.4:1 5% 84%

3 d 2-propanol 18% 4% 23% 0.66:1 12% 84%

4 e Methanol
formic acid 66% <1% <1% >66:1 40% 106%

5 d,e,f Methanol
formic acid <1% <1% 1% N/A 19 ± 1% 22%

Reaction conditions unless otherwise specified: Nitrobenzene in 1.2 mmol or 0.24 M, KOH in 1.43 mmol, an alcohol
solvent in 5.0 mL, 160 ◦C, 1 h, under N2, and with 1% catalyst loading (11 µmol), which is calculated by dividing
the mole of Ir, obtained from elemental analysis, by the mole of nitrobenzene, 1.2 mmol. AZB and AZXB denote
azobenzene and azoxybenzene, respectively. The dimer refers to azobenzene and azoxybenzene. N/A denotes
not applicable. All percentages are % mole. a Yields are calculated based on the starting material, nitrobenzene in
1.2 mmol, using quantitative 1H{13C} NMR analysis with p-xylene as an internal standard; b SM denotes starting
material (nitrobenzene); c mass balance = % yield of aniline + 2 × % yield of the dimers + % recovery yield of
nitrobenzene starting material; d control experiments without the Ir catalyst; e the solvent is composed of 5 mL
methanol and 88%wt aqueous formic acid in 0.43 mL (12 mmol of formic acid, 2.2 M in the 5.43 mL combined
solution); f repeated twice.

When a methanol solution of formic acid (2.2 M in methanol) was used as the source of hydrogen
in entry 4, the PVP[Ir]-catalyzed reaction gave aniline in 66% yield at 160 ◦C in 1 h. No significant
(<1%) side products (azobenzene and azoxybenzene) or dark red precipitates formed. Nitrobenzene
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was recovered in 40% yield. The mass balance was 106%. The >100% mass balance is likely due to the
±10% error in the quantitative proton NMR analysis. Without PVP[Ir] and under otherwise identical
conditions to entry 4, nearly no product formed, and the starting material was recovered in 19 ± 1%
yield (entry 5). No carbonyl stretch at 1875 cm−1 was detected by FT-IR in a reaction of PVP[Ir] and
formic acid in methanol (Figure S4 in Supplementary Materials), in contrast to the reaction of PVP[Ir]
and pure methanol. Both results of the FT-IR analyses are reproducible.

The high reactivity of formic acid cannot be rationalized in terms of its C-H bond strength
(96.6 kcal/mol), which is higher than those of the α-C-H bonds of ethanol (95.9 kcal/mol),
2-propanol (94.8 kcal/mol), and propanol (95.5 kcal/mol) [53]. Propanol is present in <2% in the
reagent-grade 2-propanol.

In general, formic acid is an efficient hydrogen donor because its dehydrogenation is exothermic
(∆H◦ = −7.9 kcal/mol) [27,54,55]. The dehydrogenation of formic acid to CO2 and H2 is more
thermodynamically favorable than the decarbonylation to CO and H2O (∆H◦ = −3.0 kcal/mol) [27,54].
The formation of surface metal carbonyl with CO is a catalyst deactivation pathway, which is
undesirable [15,44]. Selective dehydrogenation of formic acid to CO2 and H2 has been realized using
homogeneous (ruthenium phosphine complexes) and heterogeneous catalysts (Ir/C and Pd/C) [27].
The selectivity for the dehydrogenation using Ir/C or Pd/C was close to 99%. In this work (entry 4 in
Table 1), methanol was used as a solvent for the transfer hydrogenation using formic acid. The 88%
formic acid solution contained 12% water, which can enhance the reactivity of methanol as a hydrogen
donor [47]. Methanol was used as a hydrogen donor for the Pd-catalyzed nitroarene reduction in the
presence of water. Water may facilitate the conversion of formaldehyde, the initial product of methanol
dehydrogenation, [55] to formic acid [47].

In contrast, the dehydrogenation of methanol, ethanol, and 2-propanol to the corresponding
aldehydes is endothermic [55–58]. Primary alcohols can be dehydrogenated to form aldehydes, which
can undergo decarbonylation to form CO [59,60]. Methanol, ethanol, 1- and 2-propanol can undergo
decarbonylation on a Pd metal surface to give CO and hydrocarbon [59]. Nevertheless, the formation
of surface metal carbonyl does not necessarily poison a catalyst [29]. Although water can promote
the catalytic hydrogenation of acetophenone using 2-propanol as the source of hydrogen [61,62], it
is beyond the scope of this work to determine whether water can also promote 2-propanol for the
catalytic nitrobenzene reduction.

The pressure was monitored over time for the catalytic transfer hydrogenation with formic acid at
160 ◦C (entry 4 in Table 1). The reaction was carried out in a high-pressure metal reactor equipped
with a pressure gauge on a gage block assembly (Parr Instrument Company, Moline, IL, USA). Heating
was carried out in a silicone oil bath that can withstand temperature up to 200 ◦C (Sigma-Aldrich,
St. Louis, MO, USA). The pressure gauge (Wika Instrument, Lawrenceville, GA, USA) has a detection
limit of 2–140 kg/cm2 (1 kg/cm2 = 0.98 bar). Since the pressure gauge can be damaged at elevated
temperature, only the reaction vessel was fully submerged in the oil bath. As described in entry 1 in
Table 2, the temperature of the oil bath decreased from 160 to 135 ◦C soon after submerging the reactor
in the oil bath, which had been pre-heated to 160 ◦C. The pressure of the reaction was 4 ± 1 kg/cm2.
Fifteen minutes later (entry 4 in bold), the temperature and pressure rose to 160 ◦C and 20 ± 1 kg/cm2.
Another fifteen minutes later (entry 7 in bold), the pressure reached the maximum of 24 ± 1 kg/cm2

and remained at this value till the end of the reaction (entries 7 to 15). This pressure cannot be fully
accounted for by the vapor pressure of methanol solvent, which is 16 bar (17 kg/cm2) at 160 ◦C [63]. The
additional pressure of 7 ± 1 kg/cm2 could be attributed to the gases generated from the decomposition
of formic acid. The dehydrogenation of formic acid is exothermic and can be catalyzed by Ir/C or
Pd/C [27,54,55]. Therefore, we cannot rule out the possibility that H2 and CO2 gases were generated in
situ from formic acid in the catalytic hydrogenation of nitrobenzene, where H2 served as the source of
hydrogen. Ruppert et al. reported the transfer hydrogenation of levulinic acid using formic acid as the
source of hydrogen with a ruthenium nanoparticle catalyst. H2, along with CO2, CO, and CH4, was
generated in situ in this reaction [64].
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Table 2. Pressure over time for the catalytic transfer hydrogenation of nitrobenzene with formic acid.

Entry Time (Hour/Minute) Pressure (kg/cm2) Temperature (◦C)

1 0:00 4 135
2 0:05 9 140
3 0:10 18 146
4 0:15 20 160
5 0:20 22 160
6 0:25 23 160
7 0:30 24 160
8 0:35 24 160
9 0:40 24 160
10 0:45 24 160
11 0:50 24 160
12 0:55 24 160
13 1:00 24 160
14 1:05 24 160
15 1:10 24 160

3. Conclusions

The 7 ± 1.1 nm PVP[Ir] NPs were partially reduced iridium oxide NPs with a 33.8 ± 0.4% Ir
content. The XPS binding energy analysis suggests that 7% of the iridium is metallic, and 93% is IrO2.
Using alcohol as the source of hydrogen, the PVP[Ir]-catalyzed transfer hydrogenation of nitrobenzene
was inefficient and unselective. In contrast, formic acid was superior to dry alcohol as the hydrogen
source for the PVP[Ir]-catalyzed nitrobenzene reduction. PVP[Ir] catalyzed the selective transfer
hydrogenation of nitrobenzene to aniline in 66% yield using formic acid as the source of hydrogen. No
significant side products (azobenzene and azoxybenzene) formed in this reaction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2624-8549/2/4/61/s1,
Figure S1: FT-IR spectrum of PVP[Ir], Figure S2: Binding energy analysis on the Ir 4f7/2 and 4f5/2 peaks of PVP[Ir],
Figure S3: PVP[Ir] before (grey) and after (red) the decarbonylation of methanol, Figure S4: PVP[Ir] before (grey)
and after (red) the reaction with formic acid in methanol, Table S1: The PVP[Ir]-catalyzed transfer hydrogenation
of acetophenone to 1-phenylethanol.
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